8–15. The screw of the clamp exerts a compressive force of 500 lb on the wood blocks. Determine the maximum normal stress developed along section a–a. The cross section there is rectangular, 0.75 in. by 0.50 in.

\[A = 0.75(0.5) = 0.375 \text{ in}^2 \]

\[I = \frac{1}{12}(0.5)(0.75^3) = 0.017578 \text{ in}^4 \]

\[\sigma_{\text{max}} = \frac{P}{A} + \frac{Mc}{I} \]

\[= \frac{500}{0.375} + \frac{2000(0.375)}{0.017578} = 44.0 \text{ ksi (T)} \]

Ans
8-20. The offset link supports the loading of \(P = 30 \, \text{kN} \). Determine its required width \(w \) if the allowable normal stress is \(\sigma_{\text{allow}} = 73 \, \text{MPa} \). The link has a thickness of 40 mm.

\[
\sigma_{a} = \frac{P}{A} = \frac{30 \times 10^3}{(w)(0.04)} = \frac{750 \times 10^3}{w}
\]

\[
\sigma_{\text{due to axial force}}
\]

\[
\sigma_{b} = \frac{Mc}{I} = \frac{30 \times 10^3(0.05 + \frac{w}{2})}{\left(\frac{1}{12}(0.04)^3w^3\right)} = \frac{4500 \times 10^3(0.05 + \frac{w}{2})}{w^2}
\]

\[
\sigma_{\text{due to bending}}
\]

\[
\sigma_{\text{max}} = \sigma_{\text{allow}} = \sigma_{a} + \sigma_{b}
\]

\[
73 \times 10^3 = \frac{750 \times 10^3}{w} + \frac{4500 \times 10^3(0.05 + \frac{w}{2})}{w^2}
\]

\[
73w^2 = 0.75w + 0.225 + 2.25w
\]

\[
73w^2 - 3w - 0.225 = 0
\]

\[
w = 0.0797 \, \text{m} = 79.7 \, \text{mm} \quad \text{Ans}
\]
8-21. The offset link has a width of \(w = 200 \text{ mm} \) and a thickness of \(t = 40 \text{ mm} \). If the allowable normal stress is \(\sigma_{\text{allow}} = 75 \text{ MPa} \), determine the maximum load \(P \) that can be applied to the cables.

\[
A = 0.2(0.04) = 0.008 \text{ m}^2
\]

\[
I = \frac{1}{12}(0.04)(0.2)^3 = 26.6667(10^{-6}) \text{ m}^4
\]

\[
\sigma = \frac{P}{A} + \frac{Mc}{I}
\]

\[
75(10^6) = \frac{P}{0.008} + \frac{0.150 P(0.1)}{26.6667(10^{-6})}
\]

\[P = 109 \text{ kN} \quad \text{Ans} \]
8-22. The joint is subjected to a force of \(P = 80 \text{ lb} \) and \(F = 0 \). Sketch the normal-stress distribution acting over section e-e if the member has a rectangular cross-sectional area of width 2 in. and thickness 0.5 in.

\[
\sigma \text{ due to axial force:} \\
\sigma = \frac{P}{A} = \frac{80}{(0.5)(2)} = 80 \text{ psi}
\]

\[
\sigma \text{ due to bending:} \\
\sigma = \frac{Mc}{I} = \frac{100(0.25)}{\frac{1}{12}(2)(0.5)^3} = 1200 \text{ psi}
\]

\[
(\sigma_{\text{max},e}) = 80 + 1200 = 1280 \text{ psi} = 1.28 \text{ ksi} \quad \text{Ans}
\]

\[
(\sigma_{\text{max},c}) = 1200 - 80 = 1120 \text{ psi} = 1.12 \text{ ksi} \quad \text{Ans}
\]

\[
\gamma = \frac{(0.5 - \gamma)}{1.25} = 1.12
\]

\[
y = 0.264 \text{ in.}
\]
8-23. The joint is subjected to a force of \(P = 200 \) lb and
\(F = 150 \) lb. Determine the state of stress at points \(A \) and \(B \)
and sketch the results on differential elements located at
these points. The member has a rectangular cross-sectional
area of width 0.75 in. and thickness 0.5 in.

\[A = 0.5(0.75) = 0.375 \text{ in}^2 \]

\[Q_A = \gamma_k A' = 0.125(0.75)(0.25) = 0.0234375 \text{ in}^3; \quad Q_B = 0 \]

\[I = \frac{1}{12}(0.75)(0.5^3) = 0.0078125 \text{ in}^4 \]

Normal Stress:

\[\sigma = \frac{N}{A} + \frac{M_y}{I} \]

\[\sigma_A = \frac{200}{0.375} + 0 = 533 \text{ psi} \quad \text{Ans} \]

\[\sigma_B = \frac{200}{0.375} - \frac{50(0.25)}{0.0078125} = -1067 \text{ psi} = 1067 \text{ psi} \quad \text{Ans} \]

Shear Stress:

\[\tau = \frac{VQ}{It} \]

\[\tau_A = \frac{150(0.0234375)}{(0.0078125)(0.75)} = 600 \text{ psi} \quad \text{Ans} \]

\[\tau_B = 0 \quad \text{Ans} \]
The gondola and passengers have a weight of 1500 lb and center of gravity at G. The suspender arm AE has a square cross-sectional area of 1.5 in. by 1.5 in., and is pin connected at its ends A and E. Determine the largest tensile stress developed in regions AB and DC of the arm.

Segment AB:

\[
(\sigma_{\text{max}})_{\text{AB}} = \frac{P_{AB}}{A} = \frac{1500}{(1.5)(1.5)} = 667 \text{ psi} \quad \text{Ans}
\]

Segment CD:

\[
\sigma_a = \frac{P_{CD}}{A} = \frac{1500}{(1.5)(1.5)} = 666.67 \text{ psi}
\]

\[
\sigma_b = \frac{M_c}{I} = \frac{1875(12)(0.75)}{\frac{1}{12}(1.5)(1.5^3)} = 40000 \text{ psi}
\]

\[
(\sigma_{\text{max}})_{\text{CD}} = \sigma_a + \sigma_b = 666.67 + 40000 = 40666.67 \text{ psi} = 40.7 \text{ ksi} \quad \text{Ans}
\]
5-25 The vertical force P acts on the bottom of the plate having a negligible weight. Determine the shortest distance d to the edge of the plate at which it can be applied so that it produces no compressive stresses on the plate at section $a-a$. The plate has a thickness of 10 mm and P acts along the center line of this thickness.

\[
\sigma_a = 0 = \sigma_a - \sigma_b \\
0 = \frac{P}{A} - \frac{Mc}{I} \\
0 = \frac{P}{(0.2)(0.01)} - \frac{P(0.1 - d)(0.1)}{12(0.01)(0.2^2)} \\
P\left(1000 + \frac{15000d}{0.0667m = 66.7 \text{ mm}}\right) = 0
\]

Ans

© 2005 R. C. Hibbeler. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
8-26. The bar has a diameter of 40 mm. If it is subjected to a force of 800 N as shown, determine the stress components that act at point A and show the results on a volume element located at this point.

\[I = \frac{1}{4} \pi r^4 = \frac{1}{4} \pi (0.02)^4 = 0.1256637 \times 10^{-6} \text{ m}^4 \]

\[A = \pi r^2 = \pi (0.02)^2 = 1.256637 \times 10^{-3} \text{ m}^2 \]

\[Q_A = y' A' = \frac{4 (0.02) \pi (0.02)^2}{3 \pi} = 5.3333 \times 10^{-4} \text{ m}^3 \]

\[\sigma_A = \frac{P}{A} + \frac{M z}{I} = \frac{400}{1.256637 \times 10^{-3}} + 0 = 0.318 \text{ MPa} \quad \text{Ans} \]

\[\tau_A = \frac{V Q_A}{I t} = \frac{692.82 \times 5.3333 \times 10^{-4}}{0.1256637 \times 10^{-4} \times 0.04} = 0.735 \text{ MPa} \quad \text{Ans} \]
8-27. Solve Prob. 8–26 for point B.

\[I = \frac{1}{4} \pi r^4 = \frac{1}{4} (\pi)(0.02)^4 = 0.1256637 \times 10^{-4} \, \text{m}^4 \]

\[A = \pi r^2 = \pi (0.02)^2 = 1.256637 \times 10^{-3} \, \text{m}^2 \]

\[Q_B = 0 \]

\[\sigma_z = \frac{P}{A} \frac{M}{I} = \frac{400}{1.256637 \times 10^{-3}} - \frac{138.56 \times (0.02)}{0.1256637 \times 10^{-6}} = -21.7 \, \text{MPa} \quad \text{Ans} \]

\[\tau_B = 0 \quad \text{Ans} \]

© 2005 R. C. Hibbeler. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
The cylindrical post, having a diameter of 40 mm, is being pulled from the ground using a sling of negligible thickness. If the rope is subjected to a vertical force of \(P = 500 \) N, determine the stress at points \(A \) and \(B \). Show the results on a volume element located at each of these points.

\[
I = \frac{1}{4} \pi r^4 = \frac{1}{4} \pi (0.02^2) = 0.1256637 \times 10^{-6} \text{ m}^4
\]

\[
A = \pi r^2 = \pi (0.02^2) = 1.256637 \times 10^{-3} \text{ m}^2
\]

\[
\sigma_A = \frac{P}{A} + \frac{Mx}{I} = \frac{500}{1.256637 \times 10^{-3}} + 0 = 0.398 \text{ MPa} \quad \text{Ans}
\]

\[
\sigma_B = \frac{P}{A} - \frac{Mc}{I} = \frac{10 \times (0.02)}{1.256637 \times 10^{-3}} = -1.19 \text{ MPa} \quad \text{Ans}
\]
8-38. Determine the maximum load P that can be applied to the pin having a negligible thickness so that the normal stress in the pin does not exceed \(\sigma_{\text{allow}} = 30 \text{ MPa} \). The pin has a diameter of 50 mm.

\[\sum F = 0; \quad N - P = 0; \quad N = P \]

\[\sum M = 0; \quad M - P(0.025) = 0; \quad M = 0.025P \]

\[A = \frac{\pi}{4} d^2 = \pi (0.025^2) = 0.625 \times 10^{-3} \pi \text{ m}^2 \]

\[I = \frac{\pi}{4} r^4 = \frac{\pi}{4} (0.025^4) = 97.65625 \times 10^{-7} \pi \text{ m}^4 \]

\[\sigma = \frac{N}{A} + \frac{My}{I} \]

\[\sigma = 30(10^6) = \frac{P}{0.625 \times 10^{-3} \pi} + \frac{P(0.025)(0.025)}{97.65625 \times 10^{-7} \pi} \]

\[P = 11.8 \text{ kN} \quad \text{Ans} \]
The 1\text{-in.}-diameter bolt hook is subjected to the load of $F = 150$ lb. Determine the stress components at point A on the shank. Show the results on a volume element located at this point.

\[\sum F = 0; \quad N_A - 150 \cos 30^\circ = 0 \]

\[N_A = 129.9038 \text{ lb} \]

\[\sum F_y = 0; \quad V_A - 150 \sin 30^\circ = 0 \]

\[V_A = 75 \text{ lb} \]

\[\sum M_A = 0; \quad 150 \cos 30^\circ (1.5) + 150 \sin 30^\circ (2) - M_A = 0 \]

\[M_A = 344.8557 \text{ lb} \cdot \text{in.} \]

\[\sigma_A = \frac{P}{A} + \frac{Mc}{I} = \frac{129.9038}{\pi \left(\frac{1}{2}\right)^2} + \frac{344.8557 \left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)^4} = 28.8 \text{ ksi} \quad \text{Ans} \]

\[\tau_A = 0 \quad (\text{since } Q_A = 0) \quad \text{Ans} \]
8-31 The 1-in.-diameter bolt hook is subjected to the load of \(F = 150 \text{ lb} \). Determine the stress component at point \(B \) on the shank. Show the results on a volume element located at this point.

\[\sum F = 0; \quad N_B - 150 \cos 30^\circ = 0; \quad N_B = 129.9038 \]

\[\sum F = 0; \quad V_B - 150 \sin 30^\circ = 0; \quad V_B = 75 \text{ lb} \]

\[\sum M = 0; \quad 150 \cos 30^\circ (1.5) + 150 \sin 30^\circ (4) - M_B = 0 \]

\[M_B = 494.8557 \text{ lb} \cdot \text{in.} \]

\[\sigma_B = \frac{P}{A} - \frac{Mc}{I} - \frac{129.9038}{\frac{3}{4}(1.5)^2} - \frac{494.8557(1)}{\frac{3}{4}(1.5)^4} = -39.7 \text{ ksi} \quad \text{Ans} \]

\[\text{Ans} \]

© 2005 R. C. Hibbeler. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
8.32. The pin support is made from a steel rod and has a diameter of 20 mm. Determine the stress components at points A and B and represent the results on a volume element located at each of these points.

\[I = \frac{1}{4} \pi (0.01)^4 = 7.85398 \times 10^{-6} \text{ m}^4 \]

\[Q_A = \frac{4}{3\pi} \frac{1}{2} \pi (0.01)^2 = 0.66667 \times 10^{-6} \text{ m}^3 \]

\[Q_A = 0 \]

\[\sigma_A = \frac{V_Q}{I} = \frac{150 \times 0.6667 \times 10^{-6}}{7.85398 \times 10^{-6}} = 15.3 \text{ MPa} \quad \text{Ans} \]

\[\tau_A = 0 \quad \text{Ans} \]

\[\sigma_B = 0 \quad \text{Ans} \]

\[\tau_B = \frac{V_Q}{I} = \frac{150 \times 0.6667 \times 10^{-6}}{7.85398 \times 10^{-6}} = 0.637 \text{ MPa} \quad \text{Ans} \]

\[\sigma_A = 15.3 \text{ MPa} \quad \tau_A = 0.637 \text{ MPa} \]
8-33 Solve Prob. 8-32 for points C and D.

\[I = \frac{1}{4} \pi (0.01^4) = 7.85398 \times 10^{-6} \text{ m}^4 \]

\[Q_C = 0 \]

\[\sigma_C = \frac{M_C}{I} = \frac{12(0.01)}{7.85398(10^{-6})} = 15.3 \text{ MPa} \quad \text{Ans} \]

\[\tau_C = 0 \quad \text{Ans} \]

\[\sigma_D = 0 \quad \text{Ans} \]

\[\tau_D = \frac{VQ_D}{I} = \frac{150(0.6667)(10^{-6})}{7.85398(10^{-6})(0.02)} = 0.637 \text{ MPa} \quad \text{Ans} \]

\[\epsilon_C = 15.3 \text{ MPa} \]

\[\tau_D = 0.637 \text{ MPa} \]